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Using design theory to characterize various forms of breakthrough R&D projects and their 
management: revisiting Manhattan & Polaris. 

ABSTRACT 

 

In this paper we propose to revisit two emblematic projects, Manhattan and Polaris, with the 

models developed by design theory. In particular we demonstrate, relying on recent advances in 

design theory, how these major projects, traditionally presented as radical innovations, are in 

fact quite different. We show that this explains the different managerial strategies of this two 

cases : whereas Polaris focuses on the control of the design process, Manhattan exhibit a very 

original strategy, characterized by the simultaneous exploration of different solutions, to 

manage unforeseeable uncertainties. We therefore hope to demonstrate the fruitfulness of the 

dialogue between design theory and project management.  

Keywords: Design theory, project management, innovation 
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Using design theory to characterize various forms of breakthrough R&D 

projects and their management: revisiting Manhattan & Polaris. 

1. Introduction  

One of the most important evolutions in the field of project management in recent years is, in 

our view, the development of a form of “contingency theory” of project management. Indeed, 

the field of PM has long been dominated by a rational, instrumental approach which aims to 

reach a clearly defined goal within budget, time and quality constraints. This perspective is 

now widely criticized. In line with work on project classification (Wheelwright & Clark, 

1992; Shenhar & Dvir, 2007) we believe that a distinction should be drawn between the 

various design situations to which different types of projects will be suited. However this raise 

an important problem namely to characterize the “nature of the problem” faced by a given 

project. This is where design theory could be extremely useful. Indeed, until now, the few 

research on this question rely on relatively general criteria: 

− Wheelwright & Clark, in their famous 1992 paper, proposes to class project according 

to two criteria: the degree of product and process change. This leads them to 

distinguish between derivative, platform, breakthrough and research & advanced 

development projects. More recently,  

− Shenhar & dvir (2007) have proposed the “diamond approach”, in which for criteria 

are used to class projects : novelty, technology complexity and pace (NTCP). They 

thus show that traditional project management is suited to relatively simple project 

that develop incremental innovation.  

However, in each case, notion such as “product change”, “novelty”, or “technology” can be 

criticized has being too vast. For example, the classification of technology from “low-tech” to 

“super high-tech” proposed by Shenhar & Dvir is quite hard to operationalize. Indeed “super 

high-tech” is defined as a case where “projects are based on new technologies that do not 
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exist at project initiation” (p. 48). But this is a rather broad definition. It does not allow to  

really grasp the nature of the design situation confronted by a project. Furthermore it is a-

theoretical, not grounded in any theory of the design process.  This is where PM meets design 

theory.  

 

In this paper we propose to use recent advances in design theory to discuss the relevance of 

the dominant model of project management and its limitations in situation of innovative 

design. Most recent design theories like C-K design theory (Hatchuel & Weil, 2009) are today 

powerful tools to follow complex design processes, from science products requiring intensive 

knowledge creation to creative design processes (see for creativity methods and C-K Reich & 

al., 2010; see for science-based products for instance (Gillier & al., 2010); see examples in Le 

Masson & al., 2010). Relying on the C-K theory of design we will revisit two landmark cases 

in the history of project management : the Polaris project (1956 – 1960) and Manhattan 

project (1942 – 1945). The first one is famous in the field of PM for its development of the 

PERT method of planning. Thus it exemplifies a case of “traditional” project management. 

The second one constitutes a perfect example of radical innovation, namely the atomic bomb. 

Although presented has the roots of modern project management (see for example Morris, 

1997), this case has recently been reexamined by Lenfle (2008 & 2011) and Lenfle & Loch 

(2010). They demonstrate that this presentation is notoriously wrong. On the contrary, 

Manhattan exhibits very original managerial strategies that can be applied to exploratory 

projects that are more and more important in today’s innovation-based competition. The 

discrepancy between the two cases are interesting to study because, usually, they are both 

presented has radical innovations and there are difficulties to characterize the differences 

between them. In this paper we intend to demonstrate, using design theory, that they were in 

fact confronted to quite different situations. And this explains why the managerial strategies 
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have been so different. In so doing we hope to demonstrate that bridging project management 

and  design theory constitutes a fruitful research field for the coming years, in particular for 

new product development projects.  

 

Fortunately, for our attempt the Manhattan and Polaris Projects have been extensively 

studied. We may therefore draw on a large amount of historical material that has so far not 

been used to study innovation management. Our objective is not to provide a comprehensive 

account of the cases or to summarize their unfolding (for Manhattan see Hewlett & Anderson, 

1962 or Rhodes, 1986; for Polaris see Sapolsky, 1971 and Spinardi, 1994), but to focus on the 

design situation they confront. We will nonetheless include details that are critical for our 

argument. Given the information available, we consider that the point of “theoretical 

saturation,” which Glaser and Strauss (1967) proposed as criterion to stop collecting data, has 

been attained. Our analysis may therefore lack empirical originality, but will hopefully 

triangulate the data in original ways. 

 

2. C-K Design theory 

2.1. Main features of C-K design theory for the analysis of projects 

 

 Since its inception, design theory has attempted to develop models of the 

designers’ reasoning, as well as tools to organize and/or rationalize the design process 

(Simon, 1969; Pahl & Beitz, 1996; Suh, 1990). Marples’ 1961 seminal paper includes a 

design tree of engineering design decisions, which helps understand the different 

options studied by designers working  on nuclear reactor design. The same approach has 

been subsequently used by Clark to analyze the implications of innovation (Clark, 
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1985). Still these representations were based on a decision making process: the tree-

shape described a search process in a complex decision space. In the last decades, it has 

been demonstrated that decision making models can not account for design processes, 

because the latter are not search processes because a design process precisely tend to 

regenerate the space of constraints and the space of design capacities (Dorst, 2006;, 

Hatchuel, 2002). In the last decades several design theories have been proposed, with the 

aim to account for more and more generative processes. General Design Theory (Reich, 

1995; Yoshikawa, 1981), Axiomatic Design (Suh, 1990), Coupled Design process 

(Braha & Reich, 2003), Infused Design (Shai & Reich, 2004) or C-K Design Theory 

(Hatchuel & Weil, 2009)  are formal theories that go beyond decision making theory 

and account for the processes that help to create new objects from known ones by 

expanding the initial space into a newer, broader one (for a comparison see Hatchuel & 

al., 2011).  

In this paper we choose to use C-K design theory, because the theory has already been 

successfully used in the study of innovation processes (see for instance Elmquist & 

Segrestin, 2007 ; Elmquist & Le Masson, 2009; see also Lenfle, 2012) where we have 

shown that the C-K theory provides a very useful framework to manage exploration 

projects and evaluate their outcomes.). Moreover it covers a large scope of design 

processes, from science based products to creative industrial design (Le Masson & al, 

2011).  

C-K design theory considers that a design process begins with a set of 

propositions that are considered as true (they are in the K-space, that contains all the 

propositions that are considered as true) and with one proposition that is neither true nor 

false (this is called, technically, a disjunction). This is one of the main advantages of C-

K theory: it clarifies what is a starting point of a design process: it is a proposition that 
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is not true yet – and it is impossible to prove from the beginning that it is impossible (eg 

non-marketable or unfeasible). For instance, in 1943, the proposition “there is an atomic 

bomb” is a concept: nobody can show an atomic bomb but nobody can prove that it is 

impossible to build an atomic bomb. A proposition that is neither true nor false can not 

be in the K-space (by definition of the K-space, see above): a proposition that is neither 

true nor false is called a Conception in C-K theory and is written in the C-space. The 

design process consists in using proposition known in K to refine and “expand” the 

proposition in C and to use the proposition in C to create new true proposition in K. In 

C-K theory design is a dual expansion process: it creates new concepts and new 

knowledge. The process goes on until the proposition in C is so refined, and the 

propositions in K are so enriched that finally a proposition in C becomes true: it is no 

more a concept, it becomes knowledge (technically this is called a disjunction).  

Let’s underline two critical properties of C-K design theory for the analysis of 

radical innovation process:  

1. it helps to track the evolution of concepts, i.e. the reformulations, refinements 

and changes in the product concept all along the design process. C-K theory 

shows that, paradoxically, there is a strong order in the C-space ; we say 

paradoxically because the C-space appears as the space of creativity, 

imagination,chimeras,… a space that is often considered as irrational and 

chaotic; C-K theory confirms that in C the “truth logic” can not be applied (all 

propositions are neither true nor false) but there is still a logic that describes 

the rigorous refinements of an initial concept when new attributes are 

progressively added to it. Hence it helps to follow complex reasoning on 

objects that are still partially unknown.  
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2. It helps to follow the expansion in K: during the design process, new 

knowledge can be produced (following a research program for instance). This 

new knowledge accumulates in K 

 

The generic structure of design reasoning is presented in Figure 1. 

 

Figure 1.The generic pattern of design reasoning in the C-K design theory (Hatchuel & 

Weil, 2009). 

 

2.2. C-K Design Theory and types of design reasoning 

It can be proven that C-K design theory accounts for creative design reasoning (see for 

instance (Hatchuel & al., 2011). More recently (Hatchuel & al., 2013; Le Masson & al., 

2013)  it has been shown that the structure of the knowledge base has a very deep 

impact on the type of concepts and creative reasoning. Based on mathematical models, 

it can be shown that two contrasted situations are possible:  

- if the knowledge base is modular or deterministic, then design will finally 

resume in a form of combinatorial process. The new concept can be designed by 
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the pure combination of known components (actually it was not a concept). A 

knowledge base is said to be “modular” when a knowledge attribute can be 

added to a concept without any impact on the following design steps (at a certain 

step, A or A’ can be added to a concept C and then B can equally be added to C-

A and C-A’). A knowledge base is deterministic when the addition of one 

attribute implies the addition of another one (A implies B).  

- By contrast, if the knowledge base is non-modular and non-deterministic, then 

the design process will lead to the creation of an element that can not be 

“deducted” from the knowledge base, that is more than a combination of known 

elements. A knowledge base is non-modular and non-deterministic if, at any 

stage of the design process there are always two possibilities for additional 

attributes (C� C-A or C� C-A’) and it is impossible to add two attributes 

without any consequences (there will never be any B such that B can be added 

equally to C-A and C-A’). In this case it is said that the knowledge base follows 

the splitting condition.  

These mathematical conditions actually correspond to two specific design situations; in 

engineering design situations, R&D department and design organization tend to favor 

situations that are non-splitting (modular architecture and deterministic laws); whereas 

it has been shown (Le Masson & al., 2013) that industrial designers are precisely 

educated in creating their own knowledge base that follows the splitting condition. It 

can be easily understood: engineering department favor stable situations where each 

object will appear as a combination of known pieces of knowledge whereas designers 

aims at creating novel, original, “new-to-the-world” objects.  
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 Hence design theory provides us with a powerful theorem: if a knowledge base 

follows the splitting condition, then it will lead to design “new-to-the-world” objects. 

We will use this theorem to characterize our innovation projects.  

3. The origins of the rational model of project management: the Polaris 

project. 

3.1. Context 

The Polaris project emerged in the US during the Eisenhower administration (1953 – 1961, a 

period during which 1) the launch of Sputnik (octobre 1957) lead to a fear of a “missile gap”  

with the USSR and 2) the miniaturization of thermonuclear weapons and the development of 

ballistic missiles converge to open the possibility of designing  new types of weapons. This 

leads to the launch of huge projects to develop the first thermonuclear intercontinental 

ballistic missiles (ICBM) first by the US Air Force (Atlas / Titan project, 1954 – 1959) and 

then by the Navy (Polaris project, 1956 – 1960). Before developing the Polaris case it is 

useful to explains that the development of ICBM raises huge design problems that were both  

• Technical : concerning components (liquid vs. solid propellants, guidance systems, 

warhead, reentry vehicle…) and « system integration » (vibrations, electromagnetic 

interferences, thermal control, interfaces management) 

• Organizational : one need to coordinate and integrate the functionnally defined branches 

or bureaus, dozens of firms involved, conflict between armed services. Moreover, « as a 

new technology, ballistic missile did not fit easily into the existing weapons acquisition 

structures » (i.e. not a bomber, not a bomb, not a guided-missile (first called the pilotless 

airplane)…; Sapolsky, 2003. ) and it hurts USAF strategy and « culture » i.e. reliance on 

manned strategic bombers (Beard, 1976) 
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To overcome this difficulty both the USAF and the Navy created dedicated organization with 

very strong political support and separate funding : the Western Development Division of the 

USAF and the Special Projects Office of the Navy.  

3.2. Designing Polaris  

The Polaris project was launched in 1956 by the Navy to develop the first submarine-

launched ballistic missiles (SLBM) carrying thermonuclear warheads. These offensive 

weapons, almost impossible to track and attack, became a key element of nuclear deterrence. 

In spite of its reputation for introducing PERT, the Polaris project in reality was much more 

about strategic choices than about project management techniques. The U.S. Navy initiated 

the project in order to secure resources from the Pentagon, given that the newly created Air 

Force was appropriating most of the vast resources available for nuclear and strategic defense. 

A key purpose of the program was to “get a share of the ballistic missile ‘pie’” (Spinardi, 

1994, p. 25): Admiral Burke believed that “The first service that demonstrates a capability for 

this is very likely to continue the project and others may very well drop out.” (ibid, p. 26). The 

result was a clear prioritization of schedule over cost and specifications, and, in addition, a 

willingness to experiment and change the specifications over the course of the project. This is 

illustrated by the fact that the first two versions deployed (in July 1960 and late 1961) of the 

Polaris missile had only about half the originally desired range (of 1,500 miles) and explosive 

capacity (of one megaton).  

What is interesting for our purpose is that, to gain funds, the specifications of Polaris 

were carefully differentiated from the competing Air Force systems, emphasizing the 

destruction of urban centers with limited accuracy required—as opposed to the Air Force’s 

goals of destroying military targets, which required less power but more accuracy (ibid, p. 

34).  



10 
 

The technical challenge was huge since nobody has ever designed a ballistic missile for 

submarine launch. In order to understand the challenge we have to dig a bit into the technical 

aspects of missile design. The first important point is that, at the time of Polaris, the 

architecture of a ballistic missile is largely given. It is composed (from top to bottom) by 1) a 

reentry vehicle carrying the warhead, 2) a guidance system, 3) propulsion and flight controls. 

Therefore in Polaris Polaris design  

1. Innovation concern mainly subsystems and, first and foremost the W47 

thermonuclear warhead which is probably the only radical innovation in 

Polaris1.  

2. The huge difficulty is the complexity of system integration in the missile itself 

(given the size constraints imposed by submarines), between the missile and the 

submarines, and with the required navigation/communation systems required to 

ensure an accurate positioning of the missile2. 

However the available knowledge base with solid enough to allow the project team to identify 

ex-ante different technical solutions. Sapolsky is very clear on this question when he explains 

(1972, p. 136-137) that “ if breakthrough means a substantial and unanticipated advance in 

state-of-the-art, there were, is is true, no technological breakthrough (…) [in] FBM 

subsystems. In every subsystems, the trend of technology could be identified at the initiation of 

the program and remained essentially unchanged during its duration. In every subsystem, 

progress came through a multitude of small steps and not through dramatic leaps. (…)” and 

he confirms that “  (…) The technical challenge and breakthrough in the FBM program 

was the early development of the system itself. (…) To build a system that involved 

interdependant progress in a dozen of technologies was, however, unprecedented. Such a 

                                                           
1 In order to reduce the size and the weight of the warhead, engineers and scientists to integrate the reentry 
vehicle and the warhead which becomes a single unit. This require close cooperation between the Laboratory and 
the Navy, establishing a new way of doing business for both 
2 One has to remember that the first satellite-based localization system, Transit, has been designed for Polaris.  
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system represents a susbtantial and historically unanticipated advance in the arts of planning 

and program management ». Therefore, if we apply the C/K framework to the Polaris case, 

we obtain the following depiction which emphasizes that Polaris’s design strategy was to 

differentiate it from USAF ICBM 

 

Figure 2 : Polaris design as differentiation from USAF ICBM 

  

 

This (simplified) representation of Polaris’s design strategy demonstrates that  

1. Polaris builds on previous projects 

2. The conceptual evolution is important (from silo-based ICBM targeted at military 

forces to submarine-launched deterrence weapon targeted at cities) 

3. But, since Polaris builds on previous projects, the knowledge base is very rich at the 

beginning : the architecture is given, for each components several solutions are 
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identified and competences are available within the Navy, contractors like Lockheed 

and universities.  

Therefore the residual uncertainties are not that big. Let’s underline the two critical reasons: 

on the one hand there is a large reuse of existing components and solutions; and the other 

hand the project benefits from strong independences, since some components will be changed 

without strong impact on the others. For instance the main uncertainties concern the warhead 

design, which is largely independent from the rest of the missile, the underwater launch 

system and the solid propellant propulsion..  

Let’s come now to the characterization of the knowledge base of the Polaris project: it appears 

that the available competences finally build a knowledge base that, with respect to the initial 

concept, was actually modular and deterministic. It does not follow the splitting condition. 

Using the theorem mentioned in part 2.2, we can conclude that Polaris project was actually a 

combinatorial project. Of course it tested a combination that had never been tried before but 

the combination was finally (quasi-) predictable with the available knowledge.  

3.3. Managerial implications 

This representation of the design problem helps to understand the management of Polaris. 

Indeed, since the design process is foreseeable (notwithstanding the inevitable surprises), the 

main challenge is to control its unfolding given cost / time / quality constraints. We can now 

understand the end of Sapolsky’s sentence : “Such a system represents a susbtantial and 

historically unanticipated advance in the arts of planning and program management” (see 

above). Indeed the challenge is to control the design of an incredibly complex system. This 

leads the Polaris to rely on two managerial innovations. 

 The first and, unquestionably, the most important is the creation of a dedicated 

organization, the Special Projects Office (SPO; see Sapolsky, 1972). This allows the project 

to overcome the usual bureaucratic war between the different departments of the Navy. 
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Furthermore the organization of the SPO mirrored the architecture of the missile. It was 

organized by subsystems (SP 22 : launcher / SP 23 : guidance & fire control / SP 24 : 

Navigation / etc.) and it combines  

1. A very tight centralization of system integration : the SPO define the goals, 

architectures, interfaces and control the budget ; 

2. High delegation of the work on subsystems. Contractors were give a very high degree 

of autonomy within the guidelines set by the SPO. There were always several 

contractors in competition in the design process to maintain pressure and ensure the 

existence of back-up solution (see table Sapol1 in chapter 4 of Sapolsky).  

According to Sapolsky, the existence of the SPO and its managerial approach is the key 

success factor of the Polaris project.  

 The second managerial innovation, the most famous if not the most efficient, is the 

PERT approach to scheduling. In popular account of the project, the success of Polaris, is 

associated with the development of the PERT method which, after the project, will become 

almost synonymous with project management. Sapolsky has demonstrated that this was a 

myth (chapter 5) and our purpose here is not to discuss this question. We are interested in 

uncovering what the principles of PERT reveals from the management of Polaris. To do this 

we refer to the paper published in 1959 by Malcolm & al (who were working for the SPO), 

which is the first appearance of PERT in the literature. And their starting point is very 

interesting. As they explain: « A schedule for the system development was at hand, 

encompassing thousands of activities years into the future ». In other words, in 1959 (3 years 

into the project) most of the design work was done and the challenge was to monitor work 

progression in a context of very tight schedule. Therefore, they explain “The PERT team felt 

that the most important requirement for project evaluation at SPO was the provision of 
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detailed, well-considered estimates of the time constraints on future activities.” The 

hypothesis they make are revealing of the huge K-base of the project : 

– An ordered sequence of events to be achieved constitute a valid model of the program 

– Activities could be determined 

– Activities are conditionned by identifiable product performance requirements and 

ressource applications.  

– Ressources are known and technical performance expected is specified 

Consequently, “an approach dealing only with the time variable was selected”. And, in fact, 

to the extent that system and components were already specified, the main uncertainty was 

task duration. The problem is thus one of decision under uncertainty, a question that could be 

handled through operation research methods that were in favor during the sixties through 

institutions like the RAND corporation (see Marschak & al., 1967 or, for an historical 

approach, Hounshell, 2000; Erickson & al., 2013). But we now know the necessary conditions 

to rely on this method: the existing K-base and its structure allows an (almost) complete 

definition of the system from the start3.  

 

4. The Manhattan case and the management of innovative design situation 

We can now turn to the Manhattan case which another landmark project in the field of project 

management. Recent research demonstrated that that statements saying tha Manhattan is the 

roots of modern project management are false (Lenfle, 2008; Lenfle & Loch, 2010). On the 

contrary Manhattan exemplifies the case of a project confronted with radical innovation and 

the associated unforeseeable uncertainties (or unknown unknowns). The interesting question 

is thus to analyze how they succeed in designing such an innovation so quickly. Here again 

                                                           
3 This is obvious in a Navy study of 1956-57 which gives almost the final characteristics of Polaris (see The 
China Laker, vol. 9, n°4, fall 2003) 
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we will not describe the unfolding of the project (see Gosling, 1999 or Lenfle, 2008 for an 

overview). Instead we will focus on the design strategy of the project.  

4.1. Designing the Bomb 

Scientifically, the Manhattan Project was based on the principle of the self-sustained 

nuclear chain-reaction which will be demonstrated by Enrico Fermi in December 1942, 3 

months after the beginning of the project. However going from a crude prototype pile at the 

University of Chicago to a working nuclear weapon will be a harsh innovation journey. More 

precisely the project faced two major problems: the production of fissionable materials, and 

the design of the bomb itself. These problems were aggravated by time pressure. Indeed, the 

US government feared that Nazi Germany would build the bomb first; therefore, by 

November 1942 already, it had been decided to skip the pilot phase and move directly from 

research to full-scale production. 

4.1.1. The problem : production of fissionable materials and bomb design 

Two materials capable of sustaining a chain reaction were identified at the beginning of 

the Project. One, uranium 235, is a component of natural uranium (U238), but represents only 

0,72% of its mass. The other, plutonium (Pu239), is a by-product of nuclear fission 

discovered by Glenn T. Seaborg in 1941. In both cases, the production of fissionable materials 

raised huge scientific and technical problems: 

− Separating U235 from U238 involves extremely complex processes, based on the 

slight differences in the atomic mass of the two isotopes (less than 1%). Seven 

different separation methods were identified in 1941; as we shall see, three of them 

would finally be used [14].  

− Plutonium production involves the design and construction of nuclear reactors and 

the associated chemical separation plants. Twelve separation processes were 
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studied at the University of Chicago “Met Lab” at the beginning of plant 

construction. 

These were breakthrough innovations. The processes either did not exist before the project 

(plutonium production) or had never been used with radioactive materials (chemical 

separation). They entailed extremely tight requirements, and involved radioactive (and 

therefore very dangerous) materials. Above all, the available knowledge about the production, 

metallurgy and chemistry of plutonium and uranium separation was far from complete. Thus, 

commenting on the 1943 Met Lab plutonium research program, Smyth observed that “Many 

of the topics listed are not specific research problems such as might be solved by a small team 

of scientists working for a few months but are whole fields of investigation that might be 

studied with profit for years. [So] it was necessary to pick the specific problems that were 

likely to give the most immediately useful results but at the same time it was desirable to try to 

uncover general principles” [14]. In modern terms, they were confronted to a (highly) 

generative design space. The more they progress, the more they are likely to face new 

problems and solutions.  

The team faced a similar situation regarding the design of an atomic bomb. In a seminar 

organized at Berkeley by Oppenheimer in July 1942, scientists discussed bomb designs. 

Several fission bomb assembly possibilities were envisioned: the gun method, the implosion 

method, the autocatalytic method, and others. In the end, only the “gun” method and a more 

complicated variation of the “implosion” design would be used; as we shall see, the path 

toward them was not simple. Furthermore, the Berkeley discussion was theoretical, since no 

prototypes had so far been built, nor experiments undertaken. It remained to be shown, for 

example, whether a “gun” design worked for uranium and plutonium, or whether an 

“implosion” device was at all feasible.  
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4.1.2. Managerial implications 

Such a situation had fundamental managerial implications. The most important one was that 

the entire project was first and foremost characterized by unforeseeable uncertainties. General 

Leslie Groves,the project director, quickly realized the implications of such a situation. First, 

he recognized the impossibility of establishing a reliable plan of the project. A “tentative 

construction program” had emerged out of the Berkeley seminar. But “[i]t soon became 

apparent that these target dates were wholly unrealistic, for basic research had not yet 

progressed to the point where work on even the most general design criteria could be started” 

(ibid, p. 15).  

In short, the required knowledge was largely non-existent at the outset of the project. At 

the end of a meeting with scientists at the University of Chicago on October 5, 1942, soon 

after his nomination as Project director, Groves “asked the question that is always of 

uppermost in the mind of an engineer: with respect to the amount of fissionable material 

needed for each bomb, how accurate did they think their estimate was? I expected a reply of 

“within twenty-five or fifty percent,” and would not have been surprised at an even greater 

percentage, but I was horrified when they quite blandly replied that they thought it was 

correct within a factor of ten. This meant, for example, that if they estimated that we would 

need on hundred pounds of plutonium for a bomb, the correct amount could be anywhere 

from ten to one thousand pounds. Most important of all, it completely destroyed any thought 

of reasonable planning for the production plants of fissionable materials. My position could 

well be compared with that of a caterer who is told he must be prepared to serve anywhere 

between ten and a thousand guests. But after extensive discussion of this point, I concluded 

that it simply was not possible then to arrive at a more precise answer” (ibid, p. 40). He thus 

concluded: “While I had known that we were proceeding in the dark, this conversation 

brought it home to me with the impact of a pile driver. There was simply no ready solution to 
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the problem we faced, except to hope that the factor of error would prove to be not quite so 

fantastic” (ibid.).  

It is thus clear that the project faces a design situation that is completely different from 

Polaris. The K-base is largely non-existent, there is no existing industrial base and, therefore, 

nobody can predict the unfolding of the project. One can even question its manageability. 

This is where the design strategy plays a central role since the question is not to control a 

complex but predictable design process (Polaris), but to manage the unknown.   

4.1.3. Design  strategy 

This is where the design strategy plays a central role. We can roughly summarize as follows : 

given the available K-base, nobody knows what is feasible in terms of fissionable material 

[mt] and ignition mechanism [im]. Several solutions are identified (see Serber, 1943) but it’s 

impossible to anticipate which one will work. Moreover there are probably incompatibilities 

in K-space, i.e. not all the [mt;im] combination will work. Contrary to the previous case, there 

are strong interdependencies, the choice of one alternative leads to redesign the rest of the 

project. We recognize here the two features of the splitting condition: with regard to the initial 

concept, the knowledge base is non deterministic and non modular. Here again, using the 

splitting condition theorem, we can deduce that this implies that the concept will lead “out-of-

the-box”, beyond the pure combination of available components4.  

In a such a situation, it is necessary to go out of the box while meeting all the “constraints” or 

requirements of the initial concepts. It implies a strong effort of knowledge creation on each 

of the constraints. Since no modularity can be expected, it is necessary to explore a large set 

of alternatives. It hence enlightens the the design approach of L. Groves and the steering 

                                                           
4 Note that some design theories are very close to an extended combinatorics, like General Design Theory (GDT) 
or Axiomatic Design (AD). These theories are actually sufficiant to describe projects that don’t meet the splitting 
condition. Polaris project might have been described using GDT or AD. As soon as a project knowledge base 
does meet the splitting condition, itwill be necessary to rely on design theories that are more generative, like 
Coupled Design Process (CDP), Infused Design (ID) or C-K. This confirms that we were right to choose C-K 
theory to compare and characterize Polaris and Manhattan. 
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committee. Indeed, as shown in the figure below, they will make two fundamental design 

decisions : 

1. The separation of material production and bomb design. The idea was on one hand to 

explore different ignition mechanism working “in one or more of the materials known 

to show nuclear fission” (Serber, 1943, p. 1) and, on the other hand, to produce as pure 

as possible fissionable materials. The goal was to avoid exploration of predefined 

couples of [mt; im] that would prove to be dead ends; 

2. Because of unforeseeable uncertainties and the utmost importance of time, they 

decided to explore and implement simultaneously the different solutions, both for the 

production of fissionable materials and for bomb design (see Lenfle, 2011 for a detailed 

analysis of the parallel approach in the Manhattan case).  

The fundamental goal of this strategy was to build a large K-base to be able to design 

different weapons given what will be discovered. The Figure 3 summarizes the possible 

solutions envisioned by the project team. In the remaining of the paper, we will use it to 

describe the evolution of the design process of the atomic bomb. This will help to 

understand how this strategy explains the final success of a project that, otherwise, could 

have been a complete failure.  
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Figure 3 : a complex and generative design space (end of 1942) 

 

 

Given what the available knowledge in september 1942 their first strategy (figure 4, preferred 

choices are in red, back-up in blue dotted lines) was  

1. To favor fusion over fission which, although clearly envisioned, was too uncertain to 

be of any utility during this war ; 

2. Concerning the production of fissionable material to focus on electromagnetic 

separation (code named Y12) with gaseous diffusion (K25) as a back-up 

3. Concerning bomb design to favor the gun method, which seems more robust, and to 

use it with plutonium, less known at this time. It was supposed that if the gun design 

works with plutonium, it will also work with uranium. However, given the unknowns, 

implosion was studied, by a smaller team, as a back-up. 

4. Concerning plutonium production, DuPont chooses a water-cooled reactor, simpler to 

design.  
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Figure 4 : First design strategy space (sept. 1942 – spring 1944) 

 

 

 

 

However, the unforeseeable uncertainties soon manifested and, in the spring of 1944, the 

project leaders, first and foremost, Groves and Oppenheimer, realized that the project had 

maneuvered itself into a dead end. Indeed  

1. None of the uranium enrichment methods succeeded in producing sufficiently 

enriched uranium: the cyclotrons for electromagnetic separation were a “maintenance 

nightmare” and the gaseous diffusion process raised seemingly unsolvable design 

problems (see Lenfle, 2011 for a synthesis).  

2. The production of plutonium looks more promising but “Canning” the uranium slots 

to protect them from water also raised huge problems.  
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3. And, to worsen the picture, the “gun” design proved to be unsuitable for plutonium 

(this episode, known as the “spontaneous fission crisis”, is describe in detail in 

Hoddeson & al., 1993) 

Figure 5 : The spring of 1944 crisis 

 

 

 

Therefore at this date they had a fissionable material (plutonium) without a bomb design, and 

a bomb design (the “gun”) without a workable fissionable material (uranium 235). This is 

where the chosen design strategy revealed its relevance. The building of a large K-base, and 

the decision to explore different solutions simultaneously allow the team (figure 6) 

1. To switch from the plutonium gun to the implosion design as first priority (but gun 

design continued for U235) even if many people doubt that this could be designed ;  
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2. To add a new separation process for uranium enrichment and to combine the different 

processes in order to reach the desired level of enrichment. Combination of uranium 

enrichment processes (see Lenfle, 2011 on this decision) ; 

3. To adapt a strategy of intense experimentation on the “canning” problem in plutonium 

production 

In terms of design theory, there occurs here a fascinating phenomena: the initial knowledge 

base met the splitting conditions; now it has been so enriched during the exploration process, 

that step by step it becomes non-splitting: modules and deterministic rules have been created. 

And at this stage of the process, it becomes possible to combine pieces and components to get 

a new “modular” solution. As soon as the knowledge base appears as (most likely) modular it 

becomes possible to stop exploration and knowledge creation and to come back to a 

combinatorial process. Hence the surprising speed of the final design phase.  

Figure 6 : Escapes (summer 1944 – august 1945) 
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This flexibility, allowed by the design strategy, explains the final “success” of the project 

that, at the end, proceeded at incredible speed. The implosion design was frozen very late, 

probably on February 28, 1945. Oppenheimer then created the “cowpuncher committee” to 

oversee the final phase (see Hoddeson & al, chap. 15 and 16). Yet the remaining uncertainties 

around the new device were so great that Groves, finally but reluctantly, and despite the 

considerable cost it would entail, approved Oppenheimer’s request to test the bomb. The 

Trinity test marked the dawn of the nuclear age. On July 16, 1945, the Manhattan Project 

tested, in a remote area of the New Mexico desert, the implosion bomb. The test was a 

success. The “gadget”, as it was nicknamed, exploded with an estimated power of 20,000 tons 

of TNT and the bombing of Hiroshima and Nagasaki followed three weeks later. 

5. Discussion and further research 

In this paper we have tried to bridge the literature on project management with recent 

advances in design theory. What can we learn from this first attempt and particularly from the 

comparison of the two cases.  

First it demonstrates the power of design theory to overcome the limitations of 

traditional typologies of innovation. Indeed, both Polaris and Manhattan are traditionally 

presented as examples of radical innovations. However our analysis demonstrates that the 

problem is more complex than that. Of course both were innovations, but we show that 

Polaris benefit from a large K-base and can rely on an industrial network of contractors 

already active in the field of missile design. Therefore, as pointed out by Sapolsky “In every 

subsystems, the trend of technology could be identified at the initiation of the program and 

remained essentially unchanged during its duration. In every subsystem, progress came 

through a multitude of small steps and not through dramatic leaps.” There were risks in 

Polaris but few unforeseeable uncertainties. The knowledge base was basically structured in a 

non-splitting way, meaning that it was fundamentally modular and deterministic. On the 



25 
 

contrary the Manhattan Project was plagued by unknown unknowns and has no industrial base 

to rely on. More precisely the analysis with C-K theory reveals that in Manhattan case, the 

initial knowledge actually correspond to the splitting condition: any new attributes had critical 

consequence and there was never one single and self-evident alternative. As predicted by the 

splitting condition theorem, Polaris design strategy was quite straightforward, whereas 

Manhattan had to adopt a much more original approach to manage the unknown and learn. As 

Groves said: “the whole endeavour was founded on possibilities rather than probabilities. Of 

theory there was a great deal, of proven knowledge, not much” (1962, p. 19) . In so doing we 

show how design theory is more precise than the traditional typology of innovations to 

understand what happens in projects. 

This, and this is our second contribution, leads to explicitly link the design situation 

and strategy to the management of the project. It contributes to the on-going effort to 

excavate the roots of project management techniques (Lenfle & Loch, 2010; Soderlünd & 

Lenfle, 2013). More precisely it demonstrates that the “rational” approach to PM, with its 

emphasis on control, is viable when the team benefits from a K-base and a concept that allows 

to 1) define the problem and 2) identify the different solutions beforehand. This is largely the 

case of Polaris. On the contrary in situation of innovative design, when unknown unknowns 

exist in K-space and/or C-space, then traditional PM techniques become completely 

irrelevant. This cannot be more clearly stated than by General Groves insistence on the 

decision “almost at the very beginning that we have to abandon completely all normal orderly 

procedures in the development of the production plants » (Groves, 1962, p. 72). And our 

analysis of Manhattan with the C/K theory demonstrates the necessity to adopt new 

managerial approaches based on the construction on a large K-base in order to design the 

necessary flexibility. Moreover we discover one key feature of the success of Manhattan: the 

team did not only learn but the knowledge created actually led to build a knowledge base that, 
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this time, was non-splitting. We better understand the very smart strategy of Groves, to 

explore all the extreme combinations of alternatives, in the hope to create new pieces of 

knowledge that could be considered as modules or deterministic rules.  

No doubt that this dialogue between project management and design theory constitutes an 

important avenue for future research on the management of exploratory project. Indeed it 

could help to new strategies of project management that take into account advances in design 

theory. We think in particular to the notion of expansion (Hatchuel & Weil 2009) and 

expandable rationality (Hatchuel, 2002) that, in our view, reopen a field that, for too long, has 

think of projects as convergence processes. This is already in progress. Lenfle (2012), for 

example, how C-K should lead us to rethink the evaluation of project which produces much 

more than what they deliver. Design theory helps to formalize the “much more” in terms of C 

& K. Therefore, more generally we think that design theory offers new way to represent / 

discuss / manage the exploration process. 
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