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Abstract. In this paper, we propose a new 3D object recognition method that 

employs a set of 3D keypoints extracted from point cloud representation of 3D 

views. The method makes use of the 2D organization of range data produced by 

3D sensor. Our novel 3D interest points approach relies on surface type classifi-

cation and combines the Shape Index (SI) - curvedness(C) map with the Gaus-

sian (H) - Mean (K) map. For each extracted keypoint, a local description using 

the point and its neighbors is computed by joining the Shape Index histogram 

and the normalized histogram of angles between normals. This new proposed 

descriptor IndSHOT stems from the descriptor CSHOT (Color Signature of 

Histograms of OrienTations) which is based on the definition of a local, robust 

and invariant Reference Frame RF. This surface patch descriptor is used to find 

the correspondences between query-model view pairs in effective and robust 

way. Experimental results on Kinect based datasets are presented to validate the 

proposed approach in view based 3D object recognition. 

Keywords: Depth Image, 3D Keypoints detector, Mean Curvature, Gaussian 

Curvature, Shape Index, HK Map, SC Map, SHOT Descriptor, IndSHOT. 

 

1 Introduction 

There has been strong research interest in 3D object recognition over the last decade, 
due to the promising reliability of the new 3D acquisition techniques. 3D recognition, 
however, conveys several issues related to the amount of information, class variabili-
ty, partial information, as well as scales and viewpoints differences are encountered. 
As previous works in the 2D case have shown, local methods perform better than 
global features to partially overcome those problems. Global features need the com-
plete, isolated shape for their extraction. Examples of global 3D features are volume-
tric part-based descriptions [1]. These methods are less successful when dealing with 
partial shape and intra-class variations while remaining partially robust to noise, clut-
ter and inter-class variations. The field of 2D Point-of-interest (POI) feature has been 
the source of inspiration for the 3D interest-points detectors. For example, the Harris 
detector has been extended to three dimensions, first in [2] with two spatial dimen-



sions plus the time dimension, then in [3] which discusses variants of the Harris 
measure and recently in [4] where a 3D-SURF adaptation is proposed. The 3D shape 
of a given object can be described by a set of local features extracted from patches 
around salient interest points. Regarding efficient 3D descriptors, the SHOT descrip-
tor [5] achieves both state-of-the-art robustness, and descriptiveness. Results demon-
strate the higher descriptiveness embedded in SHOT with respect to Spin Images [6] 
Exponential Mapping (EM) and Point Signatures (PS). Given the local RF, an isotrop-
ic spherical grid is defined to encode spatially well localized information. For each 
sector of the grid a histogram of normals is defined and the overall descriptor SHOT 
results from the juxtaposition of these histograms. 

Our proposed new method aims to detect salient keypoints that are repeatable under 
moderate viewpoint variations. We propose to use a measure of curvature in the line 
of Chen and Bhanu’s work [7] and construct a patch labeling to classify different 
surface shapes [7, 8] using both mean-gaussian curvatures (HK) and shape index-
curvedness (SC) couples. Thus, we select keypoints according to their local surface 
saliency. Furthermore, we suggest a novel descriptor, dubbed IndSHOT, that empha-
sizes the shape description by merging the SHOT descriptor with the Shape Index 
histogram. The complete recognition system with detection, description and matching 
phases is introduced in §2. The proposed method is then evaluated in §3. 

2 Methodology 

2.1. Resampling of the 3D Points Cloud  

As we address a recognition scenario wherein only 2.5 views are matched, we deal 
with some views of the models from specific viewpoints. In the work presented here, 
we exploit the lattice structure provided by the range image. First, we search the co-
ordinates of the maximum and minimum points at x-axis and y-axis in the sample, 
and build a bounding box based on the two limit points. Using the (i,j) coordinates of 
each point in this box, we smooth the initial 3D point cloud by resampling down to 
1/span of its original point density in order to avoid noise perturbation. Then, we gen-
erate a mesh using the new vertices corresponding to the average of points belonging 
to a rectangular region with a span in the x and y direction. The x and y spans are 
proportional to the density of points and to a fraction r1 of the bounding box dimen-
sions, so as to make our method robust to different spatial samplings and to scaling. In 
our approach, neighbour points are given by a spherical region around the point, with 
a support radius R = r2 x mesh-resolution. In practice, we adjust a local polynomial 
surface to the selected neighborhood. CGAL library is used for curvature computa-
tion. An advantage of subdividing the point cloud in local regions is to avoid mutual 
impact between them. 

2.2. Keypoint Detectors 

The aim of this step is to pick out a repeatable and salient set of 3D points. Principal 
curvatures correspond to the eigenvalues of the Hessian matrix and are invariant un-
der rotation. Hence, we propose to use local curvatures which can be calculated either 
directly from first and second derivatives, or indirectly as the rate of change of normal 
orientations in a local context region. The usual pair of Gaussian curvature K and 
mean curvature H only provides a poor representation, since the values are strongly 
correlated. Instead, we use them in composed form with curvature based quantities. In 



the following, we, first, introduce state-of-the-art detector methods based on shape 
index, HK and SC classification; then we present the principle of our new detector.  

Shape Index.  This detector type was proposed in [7], and uses the shape index (SIp) 

for feature point extraction. It is a quantitative measure of the surface shape at a point 

p, and is defined by (eq. 1), 鯨荊椎 噺 なに 伐 な講  抜      峭倦椎怠 髪 倦椎態倦椎怠 伐 倦椎態嶌     岫な岻 

where k1
p and k2

p are maximum and minimum principal curvatures, respectively. With 
this definition, all shapes are mapped into the interval [0, 1] where every distinct sur-
face shape corresponds to a unique value of SI (except for planar surfaces, which will 
be mapped to the value 0.5, together with saddle shapes). Larger shape index values 
represent convex surfaces and smaller shape index values represent concave surfaces. 
The main advantage of this measure is the invariance to orientation and scale. A point 
is marked as a feature point if its shape index SIp satisfies (2) within point neighbors, 

畔鯨荊椎 噺 兼欠捲岫鯨荊賃岻 ┹ 倦 樺 券結件訣月決剣堅嫌  欠券穴  鯨荊椎 半 岫な 髪 糠岻 抜 航剣堅鯨荊椎 噺 兼件券岫鯨荊賃岻 ┹ 倦 樺 券結件訣月決剣堅嫌  欠券穴  鯨荊椎 判 岫な 伐 紅岻 抜 航岫に岻   
where た is the mean of shape index over the SI point neighbors values and  ど 判 糠, 紅 判 な. In above expression (eq. 2), 糠 and  紅 parameters control the selection of fea-
ture points. We denote this detector by « SID ». 

 

HK and SC Classification.  The idea here is to build shape classification space using 
the pair mean-Gaussian curvatures (HK) or the pair shape index-curvedness (SC). 
Typically, for HK classification, we use the type function Tp used in LSP descriptor 
[7] that associates to each couple of H and K values a unique type value (eq. 3), 

 丹 噺 な 髪 ぬ岾な 髪    
 妬  岫茎岻峇 髪 岾な 伐    

 凪  岫計岻峇 ┹     
 難  岫隙岻 崔髪な       件血 隙 伴   諜 ┸  ど       件血 】隙】 判   諜 ┸伐な       件血 隙 隼   諜    岫ぬ岻  

where ご張 and ご懲 are two thresholds over the H and K. Nine region types are defined.  

In the shape index-curvedness (SC) space, S defines the shape type and C defines the 
degree of curvature and is the square-root of the deviation from flatness. Similarly to 
HK representation, the continuous graduation of S subdivides surface shapes into 9 
types. Planar surfaces are classified using the C value. We define a type function  丹 

(eq. 4) that associates a unique type value to each couple of SI and C values (i.e val-
ues between 0.8125 and 0.9375 correspond to dome and   丹 噺 ば ), 

              崔  丹 噺 ど      判  ご大                丹 樺 岷な┸ぱ 峅  ┹     樺 苦ど┸な躯 ┻                    岫ね岻 

For both classifications, salient regions are selected as those of one of the 5 following 

types: dome, trough, spherical, saddle rut and saddle ridge regions. More details are 

given in [9, 10].  



Combination of Criteria. Theoretically, the two classifications HK and SC should 
provide the same result; therefore we suggest combining the two criteria to increase 
reliability. In fact, our result will be validated with two measures of keypoints detec-
tion. After labeling points with a pair of value ( 丹,  丹), points with salient type pair 

are selected, in other words, if the two labels correspond to the same of the 5 salient 
region types previously mentioned. We note this detector « SC_HK ». Then, points 
with the same pair value are grouped using the connected- component labeling. Con-
nectivity is carried out by checking the 8-connectivity of each point. Finally, the cen-
ters of the connected component are selected as keypoints. We also propose further 
combination by ranking the selected keypoints according to their curvedness value. 
The point with the maximum value of curvedness over the selected keypoints is cho-
sen to represent each connected component. We call the detector combining the two 
criteria « SC_HK_connex ». 

2.1 Keypoint Descriptors 

After keypoints detection step, a 3D descriptor is computed around each selected 
interest point. In the case of range data, the dominant orientation at a point is the di-
rection of the surface normal at that point. Histogram-based methods are typically 
based on the feature point normals. For example, Local Surface Patches [7] computes 
histograms of normals and shape indexes of the points belonging to the keypoint sup-
port. The recently proposed SHOT descriptor achieves computational efficiency, de-
scriptive power and robustness by defining 3D repeatable local Reference Frame 
(RF). We briefly summarize here the structure of the SHOT descriptor. The reader is 
referred to [5] for details on the descriptor. The introduction of geometric information 
concerning the location of the points within the support is performed by first calculat-
ing a set of local histograms of normals over the 3D volumes defined by a 3D grid 
superimposed on the support and then grouping together all local histograms to form 
the final descriptor. The normal estimation is based on the Eigenvalue Decomposition 
of a novel scatter matrix defined by a weighted linear combination of neighbour point 
distances to the feature point, lying within the spherical support. The eigenvectors of 
this matrix define repeatable, orthogonal directions in presence of noise and clutter. 
Furthermore, the CSHOT descriptor [11] is proposed as an amelioration of the SHOT 
descriptor and makes profits from the 3D data enriched with texture.  The process of 
combination succeeds to form more robust and descriptive signature. 

Inspired from theses state-of-the-art descriptors, we compute the histograms of shape 
index values and of angle values between the reference surface normals at the feature 
point and the neighbour’s ones and join the two histograms similarly to the design of 
CSHOT descriptor. First of all, we accumulate point counts into bins according to a 
cosine function of the angle between the normal at each point within the correspond-
ing part of the grid and the normal at the feature point. For each of the local histo-
grams, a coarser binning is created for directions close to the reference normal direc-
tion and a finer one for orthogonal directions. In this way, small differences in ortho-
gonal directions to the normal, which are the most informative ones, cause a point to 
be accumulated in different bins. Secondly, shape index values of the feature point 
and those of its neighbours relying in the spherical support are grouped into bins. 
Finally, we merge the shape index values and the cosine values into one descriptor 
that we call IndSHOT. We perform the same process as in the CSHOT to juxtapose 
the two histograms, where index shape histogram replaces the color histogram. In 

http://en.wikipedia.org/wiki/8-connected


addition, the mean and standard deviation of shape index of the neighbors around the 
feature point are computed. The final descriptors, composed of (model ID, index 
shape + cosines histograms, surface type, the 3D coordinates of keypoint, mean and 
standard deviation of shape index), are saved to be used in the matching process.  

2.2 Matching and Recognition  

We are validating the proposed detector and descriptor using a view matching ap-
proach. Here, we focus on solving the surface matching problem based on local fea-
tures, by point-to-point correspondences obtained by matching local invariant descrip-
tors of feature points. Given a test object, we compute a measure of similarity be-
tween descriptors extracted on the test view and those of the models in database. The 
information (model ID, histogram, surface type, the centroïd, mean and standard dev-
iation of SI) are used for matching process. Hence, for each histogram from test view, 
we find the best matching histogram from database view using the Euclidian distance. 
To speed up the comparison process, we use a KD-tree structure. Two keypoints are 
matched according to their histogram distance and their types of surface. For a test 
object, a set of nearest neighbors is returned after histogram matching. In the case of 
multiple correspondences, the potential corresponding pairs are filtered based on the 
geometric constraint: Euclidean distance between features coordinates of the two 
matched surface patches. The closest couple of features in term of coordinates dis-
tance is the more likely to form a consistent correspondence. A system of incremental 
votes for each class gives the final matched class. 

3 Experimental results 

3.1. Data and Parameters 

We performed our experiments on two real range data sets. The first one is the public 
RGB-D Object Dataset [12] (figure 1). There are 51 common household object cate-
gories. In our experimentation, we use 46 objects with 25 views per object for only 
one object per category, which constitute a dataset of 1150 views. The list of the fol-
lowing objects are labelled from 1 to 46 respectively: apple_1, ball_1, banana_1, 
bell_peper_1, binder_1, calculator_1, camera_1, cap_1, cell_phone_1, cereal_box_3, cof-
fee_mug_1, comb_1, flashlight_1, food_bag_1, food_box_1, food_can_1, food_cup_1, gar-
lic_1, greens_1, hand_towel_1, instant_noodles_1, keyboard_1, Kleenex_1, lemon_1, light-
bulb_1, lime_1, marker_1, mushroom_1, notebook_1, onion_1, orange_1, peach_1, pear_1, 
pitcher_1, plate_1, potato_1, rubber_eraser_1, scissors_1, shampoo_1, soda_can_1, sponge_1, 

stapler_1, tomato_1, toothbrush_1 and watter_bottle_1. The second data set is our own 
dataset (Lab-dataset) captured with the Kinect sensor and composed of 20 objects 
(Ex. prism, ball, fan, trash can, etc) with 3 to 10 different angle views per object (fig-
ure 2). The numbers of feature points detected from these range images vary from 4 to 
250, depending on the viewpoint and the complexity of input shape. The parameters 
of our approach are: r1= 2, r2 = 4, 膳 =0.05, 紅= 0.05, i滝 噺 ど┻どどひ┸ i啄 噺 ど┻どどどな ┸ i大 噺ど┻どな. 

 

Fig. 1. Examples of objects from the RGB-D Object Dataset [12] 



 

1 2 3 4 5 6 7 8 9 10  

11 12 13 14 15 16 17 18 19 20  

Fig. 2. The 20 objects of the lab-Dataset 

 

3.2. Keypoint Stability 

To evaluate detector performance, we illustrate a visual comparison of keypoint posi-
tions detected with SC_HK , SC_HK_connex, and SID detectors as shown on figure 3. It 
reveals that the final selected points are quite well localized. The combining process 
allows a better feature point filtering than SC or HK alone, as false detected points in 
both are eliminated, and points with correct surface type remain. Figure 4 illustrates 
the relative stability of keypoint’s positions detected with SC_HK_connex detector 
when varying viewpoints for the same object. Clearly, we recover almost same key-
point positions in the different views. For a quantitative analysis showing the superior 
repeatability of our keypoints, we refer the reader to our previous publication [13]. 

     
 

Fig. 3.  Detected keypoints on trash can, fan  and storage cupboard models with:  SID in first 

column, SC_HK in second column and SC_HK_connex in third column. 

 
Fig. 4.   Detected keypoint on fan model with SC_HK_connex, in view angle variation 

3.3. Matching Result 

The test protocol for object recognition from different angle views is the following: 
for the RGBD dataset, we select one test view from the N total number of views in the 
dataset, and the N-1 views are used as the training set; this process is repeated for the 
N views of the whole database. For the lab-dataset, we select one to four random 
views per object as the query and use the remaining views for training. We carry out 
three experiments using the three descriptors SHOT, CSHOT and IndSHOT. The 
same evaluation is done for the two detectors SID and SC_HK_connex. The Overall 
recognition rates are given in table 1 for respectively our lab dataset and the RGBD 
dataset. In figure 5, the cross recognition rates between models are displayed in the 



confusion matrix. Gray level determines the rate of the recognition. Black is for high 
and white is for low recognition rate. The overall recognition rate is quite promising 
for our SC_HK_connex method in comparison to the SID results, with 91.12% on the 
RGBD dataset. This rate is achieved using the new proposed descriptor IndSHOT, 
which suggests that it is more descriptive than the CSHOT and SHOT versions. The 
recognition rate in the Lab dataset is about 82%. The reason behind this lower result 
is the high similarity between object shapes included in this dataset (two boots ob-
jects, parallelepipedic shapes, cylindrical shapes, etc).  
 

 

Fig. 5.   Confusion matrix for the result of SC_HK_connex method on RGB-D object dataset 
(on left) and on the Lab-dataset (on right). 

Table1: Recognition rates for our Lab-dataset (on left) and RGB-D object dataset (on right) 

 IndSHOT SHOT CSHOT   IndSHOT SHOT CSHOT 

 

SC_HK 

 

82.5% 

 

62,5% 

 

67.5% 

 SID 89.06% 70,75% 77.77% 

 SC_HK 91.12% 75,28% 82.14% 

The conjunction of the SC_HK_connex detector with the IndSHOT descriptor seems 
to provide more pertinent description of the local surface typology. It should also be 
noted that the overall computation time for our recognition process (detection+ de-
scription+ matching features) is quite low (~0.7s), which is a great advantage when 
dealing with real time application.  

4. Conclusions and Perspectives 

We have presented two main complementary contributions: 1/ an original 3D key-
point detector, SC_HK_connex, based on the idea of combining criteria; 2/ a new 3D 
keypoint descriptor, IndSHOT, based solely on shape characteristics.  



The proposed detector combines SC (shape curvedness) and HK criteria with the 
principle of connected components. It was already shown in our previous work that 
the selected 3D keypoints are more repeatable than for alternative detectors, and this 
is confirmed here by the good inter-view matching reached in our experiments. The 
proposed IndSHOT descriptor encodes the occurrence frequency of shape index val-
ues vs. the cosine of the angle between the normal of reference feature point and that 
of its neighbours. It seems to be significantly more descriptive than original SHOT 
and CSHOT from which we have crafted it. 

Finally, our new combination of SC_HK_connex detector + IndSHOT descriptor is 
evaluated in challenging 3D object recognition scenarios characterized by the pres-
ence of viewpoint variations and a few number of views on real-world depth data. The 
outcome is very promising results, with 91% correct recognition on 46 objects from a 
public dataset, and 82% on our own lab dataset containing 20 “everyday” objects, 
some of which are rather similar one to another.  

For the moment, measures of curvatures in our process are calculated at a constant 
scale level, so the feature’s scale is still ambiguous. To overcome this fact, we plan, as 
a future work, to search for features at different scale levels.  
 

References 

[1] Medioni, G.G. and François, A.R.J. "3-D structures for generic object recognition," Com-

puter Vision and Image Analysis, 1, 1030 (2000). 

[2] Paul S., Saad A. and Mubarak S., "A 3-dimensional SIFT descriptor and its application to 

action recognition", Proceedings of the 15th International Conference on Multimedia, 

357–360 (2007). 

[3] Fredrik V., Klas N., Mikael K. "Point-of-Interest Detection for Range Data", ICPR IEEE, 

1-4 (2008). 

[4] Jan K., Mukta P., Geert W., Radu T., Luc van G., "Hough Transform and 3D SURF for 

robust three dimensional classification," Proceedings of the European Conference on 

Computer Vision, (2010). 

[5] Samuele S., Federico T., and Luigi Di S. "Unique Signatures of Histograms for Local 

Surface Description," in Proc. ECCV, (2010).  

[6] Johnson, A.E., Hebert, M., "Using spin images for efficient object recognition in cluttered 

3d scenes," IEEE PAMI 21, 433-449 (1999). 

[7] Chen, H. and Bhanu, B. "3D free-form object recognition in range images using local 

surface patches," Pattern Recognition Letters, 28(10), 1252-126 (2007). 

[8] Erdem A., Omer E., Ilkay U. "Scale-space approach for the comparison of HK and SC 

curvature descriptions as applied to object recognition". ICIP, 413-416 (2009). 

[9] H. Cantzler, R. B. Fisher, "Comparison of HK and SC curvature description methods" In 

Conference on 3D Digital Imaging and Modeling, 285-291 (2001).  

[10] J. Koenderink and A. J. Doorn. "Surface shape and curvature scale ", Image Vis. Comput., 

vol. 10, no. 8, pp. 557–565, (1992).  

[11] Federico T., Samuele S., and Luigi Di S. "A combined texture-shape descriptor for en-

hanced 3D feature matching"; IEEE International Conference on Image Processing (ICIP), 

Brussels, Belgium, September 11-14 (2011). 

[12] http://www.cs.washington.edu/rgbd-dataset/  

[13] Ayet S. and Fabien M., "Détecteurs de points d’intérêt 3D basés sur la courbure" In COm-

pression et REprésentation des Signaux Audiovisuels (CORESA), 2012. 


