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A Time-Periodic Lyapunov Approach for Motion Planning of
Controllable Driftless Systems on SUn)

H. B. Silveira, P. S. Pereira da Silva and P. Rouchon

Abstract— For a right-invariant and controllable driftless sys-
tem on SUn), we consider a time-periodic reference trajectory
along which the linearized control system generatesu(n): such
trajectories always exist and constitute the basic ingredint
of Coron’s Return Method. The open-loop controls that we
propose, which rely on a left-invariant tracking error dynamics
and on a fidelity-like Lyapunov function, are determined from
a finite number of left-translations of the tracking error and
they assure global asymptotic convergence towards the pedic
reference trajectory. The role of these translations is to woid
being trapped in the critical region of this Lyapunov-like
function. The convergence proof relies on a periodic versio
of LaSalle’s invariance principle and the control values ae
determined by numerical integration of the dynamics of the
system. Simulations illustrate the obtained controls forn = 4
and the generation of the C-NOT quantum gate.

I. INTRODUCTION
Consider the right-invariant driftless system

X =) wHiX, X(0)=I, 1)
k=1

system[(Il) withX (0) = I, it is straightforward to show that
it will also be solved for[{ll) withX (0) = X, € SU(n).

The main result of this paper is the determination of
a solution for the periodic motion planning problem. This
is established by Theoref 2 in Section 2, whose only
assumption is that systenfi] (1) regular, in the sense of
Definition [ in Section 2. The results of Coron’s Return
Method show that such condition is always met in case
the system is controllable on $W) (see RemarK]2 in
Section 2). Loosely speaking, by finding an appropriate
reference trajecton’,., using the time-dependent change of
coordinatesZ = Z(X,t) = X'X,(t), which corresponds
to the tracking error on the group $t), and defining an
adequate “feedback”, we determine an algorithm that obtain
in a finite number of steps, continuous open-loops controls
uy, for everyl < k < m, which assure that the tracking
error X — X, converges to zero as— oo. This algorithm
relies on Lyapunov-like convergence results inspired | th
periodic version of LaSalle’s invariance principle preeeh
in [11], and in thead-conditionstabilization method of [6]. In

where X < M" is the state,M" is the Banach space g certain sense, we have used the real part of the trace of the
of squaren x n matrices with complex entries endowed|eft-invariant tracking erroZ as a Lyapunov-like function,

with the Euclidean normH = {Hy,...,H,} C su(n),
ur € R are the controls, and is the identity matrix of
M™. The periodic motion planning problerfor this system
is formulated as follows. Given goal stateX., € SU(n)
and T > 0, find a smooth periodiaeference trajectory
X, Ry — SU(n) of period T, with X,.(0) = X, and
determine continuous open-loop contralg. R, — R, for

that is, V(Z) = R(tr(Z)). In the case of quantum systems,

V' can then be seen as a fidelity-like Lyapunov function.
The problem of steering a quantum system from a given

initial state to an arbitrary final state, which can be regdrd

as a particular case of the periodic motion planning problem

here formulated, has recently been treated in [8] using a

flatness-based approach and in the book [4] (see also the

1 <k <'m, in a manner that the tracking error between thgsferences therein), where many quantum control techsique
trajectoryX: Ry — SU(n) of () and.X, converges to zero ,sed in the literature are grouped together and explained in

ast — oo, that is,lim; . [X (¢t) — X,.(t)] = 0.

detail, such as Lyapunov-based methods, optimal contibl an

We remark that there is no loss of generality in asgecompositions of SW). Our Lyapunov-like approach has
suming that X(0) = [ in (D). Indeed, since system g yestrictions on the goal stafé., € SU(rn) and onn, as

(@ is right-invariant, if (X(t), (u1(%),...,um(t))), for
t € R4, is a solution of [(1) withX(0) = I, then
(X ()Xo, (u1(t),...,um(t))), for t € Ry, is a solution of
(@) with initial condition X (0) = X, € SU(n). Therefore,

long as systeni{1) is regular.

The layout of the paper is as follows. Section 2 is
entirely dedicated to the proof of Theordm 2 mentioned
above. Simulations illustrate in Section 3 the generatibn o

if the periodic motion planning problem has been solved fof,o controlled-NOT (C-NOT) gate for a quantum system

The first author was fully supported by CAPES. The third autivas
partially supported by CNPq. The second and third authone artially
supported by CAPES/COFECUB and “Agence Nationale de la &ebke”
(ANR), Projet Blanc CQUID number 06-3-13957.

H. B. Silveira and P. S. Pereira da Silva are with Laboratdnjutoma-
tion and Control, Department of Telecommunications andt@b&ngineer-
ing, University of Sao Paulo, BraZilect or bessa@ahoo. com br
andpaul o@ ac. usp. br

P. Rouchon is with Mines ParisTech, Centre Automatique steyes,
Mathématiques et Systemes, France
pi erre.rouchon@ri nes-paristech. fr

with n = 4. Appendix presents the proof of the important
convergence result of Theordrm 1 in Section 2.

II. MAIN RESULT

Based on[{1), we define threference system

X, =Y upHiX,, X,(0) = Xe €SUM), (2
k=1
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whereX, € M™ and the smooth time functiong: R — R Let V: M™ — R be defined by

are still to be specified. n
Definition 1: System[(l) is said to begular when, given V(X) = R(tr(X)), forall X € M, )

T > 0, there exist smooth periodic functiom{: R — R and consider thauxiliar system

of period T, for all 1 < k < m, such that the solution

X Ry — SU(n) of @), with X;7(0) = I anduj, = uj, W=Wxi) fuan(t, W) HiX, (1), 8)
is also periodic of period” and satisfies 1
sparf{B}(0),1 < k <m,j € N} = su(n), (3) where(t,IW) € R x M"™, fi # 0 is a fixed real number,

: . . <k<
where N is the set of natural numbers (including zero),1 <k <m, and

Alt) = Y ul () H, € su(n), BR(t) = HpXI(t), ar(t, W) = it VWX (t)Hp X, (1)). 9
BitN(t) = —A@W)BL(t)+ Bl(t), 1<k <m, j EN, t € R,
Remark 1:Note thatA: R — su(n), B, Bl: R — M™"
are smooth and also have peridy for everyl < k < m,
j € N. Hence, they are bounded mappings.
Remark 2:Note that the linearized control system Bf (2)
(or of (X)) along the trajectoryX”, (uf, ..., ul)) is given

) m

Notice that the “closed-loop” systeri] (4) with “feedbacks”
vg = frar(t,Z) is nothing but the auxiliar systerql (8)4(9).
Note also that” in () is linear and that, folX € SU(n),
we have —n < V(X) < n and V(X) = n if and
only if X = I. Furthermore, by constructiod](t, W) =

g m 2 n
by X! = A@t)X! + >0, wp B2(t), w, € R. Based on 2= an(t, W)™ >0, for all (1, W) € R x M.

Coron’s Return Method (see [2], [3]), it can be shown that In what follows, we shall show how the next theorem,
(@) is regular in case LigT) — su(n). We recall that[{L) is which is a Lyapunov-like convergence result for the auxilia

controllable on SUn) if and only if Lie(H) = su(n) [1]. system with Lyapunov-like functioV’ (W) = R(tr(W)),

For simplicity, we shall assume throughout this paper th:ﬁnd whose proof is deferred to Appendix, determines con-

system [(11) is regular, thaf > 0 has been fixed and that Flnuous functions;: Ry, — R, for1 < & < m, such thatl(b)

the functionsuj, in (@) were specified accordingly, that is,'tf1 satlsf|edt}‘or thﬂe/ ctlots edd-lct))op systeld (4).t_V\|/e_ retrr‘:wark th?t
uy = u}, for 1 < k < m. Moreover, we also assume that € properties ol staled above are essential in the proot.

the goal stateX.. € SU(n) is fixed. DefineX,: R — SU(n) Our approach to solve the periodic motion planning problem

as X, = XI'X.. Note that X, is the solution of [(R) is then summarlzeq in Theordh 2.
with X, (0) = X and thatX, also has periodl'. It Theorem 1:Consider the set

will be shown afterwards thaX, can indeed be used as a
reference trajectory. We also adopt the following notagion
The imaginary unit ofC is denoted by and if z € C, then n
R(z) is its real part and¥(z) its imaginary part. that |\;| = 1, H)‘i =1,3(\) = =S}

It is straightforward to verify from[{1) and}2) that the =1
time-dependent change of coordinates

G={reR:z= Z R(X;), for some); € C such

=1

Then, G is a finite set;n € G andn = max(G). Further-
Z=271tX)=X'X,(t), forall(t,X)cRxM" more, lettingd be the maximal element of the s6t\ {n},
we have that, for aly = (t9, Wi,) € R x SU(n),

V(W) > = tlim Wo(t) =1,

along with the time-varying control shift

vp 2 ul(t)—up = uf () —ug, forallteR, 1<k <m,
whereW,: R — SU(n) is the solution of[(B)+(9) with initial
. condition Wy (to) = W,.

5, _ _ Suppose that/(X.,) > 4. In Theorem[lL, we choose
Z=2zXit Hi X, (t), Z(0)= Xo € SU 4 Pp
7‘( )ka k ( )a ( ) € (n)v ( ) q= (O’ Xoo) cR x SU(TL) Therefore’limt_}oo Wq(t) =T.

determine the left-invariant “closed-loop system”

=t . . . Hence, the smooth “feedbacks;: R, — R defined as
for all (¢, Z) € Rx M™. If we can find continuous functions
vi: Ry — R, for eachl < k < m, such that v (t) 2 fran(t, Z(t)) = fFAV(XT() Hp X, (1)),
Jlim Z(t) = lim X)X, (t) =1, (5) fort e Ry, 1<k < m, assure thatZ(t) = W,(t), for

_ . t € R,. Indeed, comparé]4) with](8]3(9). Thuk] (5) holds.
where Z: Ry — SU(n) is the solution of systenl{4) and  Now, assume thal/(X.) < 6. For this case, based
X: Ry — SU(n) is the solution of system({1) with the on continuity arguments, we determine an adequate (con-

continuous open-loop controls tinuous) path fromX., to I which, in a certain sense,
up(t) = ul(t) —vp(t), forallteR,, 1<k<m, reduces the problem to the situation whéféX..) > 4.
o In order to achieve this, the main idea is to find a path
it is then clear that Z: [0,1] — SU(n), with Z(0) = X and Z(1) = I,
lim [X () — X,.()] = 0, (6) and obta|n0_= bp < 01 < -+ < On_1 < On =1,
t—00 such thatV (Z(0,11)TZ(0,)) > 4, forall 0 < £ < N — 1.

thus solving the periodic motion planning problem. It thus follows from Theorem 1 that, foi < ¢ < N,



lim; o0 Z(00)We(t) = Z(6,), where W,: R — SU(n)
is the solution of [(B)£(9) with initial conditionV,(7;) =
Z(00)Z(0,—1) € SU(n), where0 =Ty < --- < Ty, are

such thatiV,(T,+1) = I. Loosely speaking, we then “glue”

together the left-translationg(6, )W, ..., Z(6x)Wy in an

If T > Tnv_1 has been chosen as above, define
Z(t) = Wi (t) € SU(n),
’U;g(t) = fkak(t, WN(t)) eR, 1<k<m,
whereWy: R — SU(n) is the solution of[(B)-£(9) with initial

fort > Ty,
fort > Ty,

appropriate manner in order to define a continuous SOIUti%nditionWN(TN) =Zn_1Wi_1(Tx) € SU(n). u

(Z(t), (v1(2),...,vm(t)), for t € Ry, of system [(¥) that
satisfies[(b). We remark that, for even< ¢ < N, it is as if

Some remarks are in order. First of all, from the rea-
soning preceding Algorithm 1, we know that there al-

we were in the cast (X ) > 4. In the sequel, we formalise ways exists some non-zerd < N such that [(I0) is
these arguments in detail and determine an algorithm whigh,e  Furthermore Theorefl 1 and properfy] (11) assure

obtains, inV steps, continuous functions,: Ry — R, for
1 < k < m, such that[{(b) holds.

It is a standard result that ady., € SU(n) can be written
as Xo, = Midiagexpi)y,...,expi\,)M, whereM is a
unitary matrix,A1,...,A, € Rand) "  A\; = 0. Consider
the pathZ: [0,1] — SU(n) from X, to I defined by

Z(0) = M'diaglexpih (1 —6),...,expid, (1 — 0))M,

for all 6 € [0,1]. Let a,b € [0,1]. Hence,Z(b)Z(a) =
M'diaglexpi)i (b —a),...,expid,(b—a))M and there-
fore V(Z(b)1Z(a)) = )_ cos(\;(b — a)). Since the
function: [0,1] — R defined byy(6) = 37, cos(A;0),
for all 8 € [0,1], is continuous withy(0) = n, there exists
v > 0 such thaty() > ¢ in case|d| < v, for all § € [0, 1]
(indeed, choose = n — § > 0). Hence,V(Z(b)Z(a)) > §
wheneverb — a| < v, for all a,b € [0,1], and there exists a
non-zeron € N such that, for allNv >,

V(ZhZo) =Y cos(AA) > 6, (10)
j=1

forall 0 < ¢ < N -1, whereZ, = Z(0,), 6, = (A,

for every0 < ¢ < N, with A = 1/N. Note thatZ, =

Z(0) = Xoo and Zy = Z(1) = I. Let N > 5 and consider
the continuous functions: M™ x M™ — R defined by
B(X,Y) = V(YTX), for all (X,Y) € M™ x M™. Since
SU(n) x SU(n) is compact3|(SU(n) x SU(n)) is uniformly

continuous. Therefore, b, (IL0), there exigts- 0 such that,
for all X € SU(n) and0 < ¢ < N — 1, we have

IX-Zi <p=V(Z X)>05 (11)

(indeed, choose = 37, cos(\;A) — & > 0 and consider

the sup norm o™ x M™). The aforementioned algorithm

is described below. Recall thaty = X, andZy = I.

that T,,1 > T, can always be chosen as required in the
algorithm, for everyl < ¢ < N — 1. It is also clear
that (Z(t), (v1(t),...,vm(t))), for t € R, determined by
the algorithm is a continuous solution of the “closed-loop”
system[(#). Indeed, compaid (4) wiff (8}-(9). Finally, sinc
V(ZNZN A Wn 1 (Tx)) = VZxaWx(Ty)) > 6,
Theorem[lL implies thalim; ., Wy (t) I. However,
Z(t) = Wn(t), for t > Tn. Therefore, the continuous
functionsvy: Ry — R determined by Algorithm 1 are such
that [8) is satisfied. We have thus shown our main result:
Theorem 2:Assume that systeril(1) is regular, in the sense
of Definition[d. GivenX, € SU(n), T' > 0 and “feedback
gains” f# > 0, considerX;": R — SU(n) andu}: R — R as
in Definition[d, for1 < k < m. DefineX, = X1 X... Then,
there exist continuous open-loop contralg: R, — R,
for 1 < k < m, such that[(b) is satisfied. In other
words, the periodic motion planning problem always has a
solution when[{lL) is regular. More precisely,Wif( X.) > 4,
where § is as in Theoreni]l1, then the smooth open-loop
controls uy(t) = ul(t) — f2V(XT(t)H,X,(t)), obtained
by numerical integration, fot € R, 1 < k < m, assure
that [6) holds. Otherwise, in casé(X.) < 4, then by
following Algorithm 1 we determine continuous functions
vk: Ry — R, for 1 < k < m, such that the corresponding
continuous open-loop controlg (t) = ul (t) — vy (t), for
t € Ry, assure tha{{6) is satisfied.

. QUANTUM MECHANICAL EXAMPLE

After some approximations, an appropriate change of
coordinates, scalings and simplifications, a controlledrngu
tum system consisting of two coupled sp}rparticles with
Heisenberg interaction and driven by an external electgsma
netic field, can be modeled as [4]

Y = (D 4 Dyuy, + Dyu, + D.u.)Y, Y(0)=1,

(12)

whereY € M* (n = 4), the controlsu,, uy, u; € R are the

Algorithm 1: Let X, € SU(n). Choose any non-zero %; ¥ 2 components of the electromagnetic field, respectively,

N € N in a manner that[{10) holds. Defirg = 0 and

Wo(Ty) = I. Foreveryl < ¢ < N—1, choose a real number 3H35, D. = H{} — 3H{j € su(4), and H]}

Ter1 > T, such thatV(?ZHZWg(TgH)) > 6, where

Wy R — SU(n) is the solution of the auxiliar systefnl (§4-(9)

with initial condition W, (T;) = Z} Z,_1Wy_1(T¢) € SU(n).
Define

Z(t) = 7[Wz(t) S SU(n), fort e [Tg,Tngl),
Uk(t) = frap(t,We(t)) e R, 1 <k <m,forte [Tg,Tg.,_l).

D = diag(31, =, —1, —1), D, = Hf — 3HY, D, = HE +

R)ij
y (hke™)s
HL = (h;;”) € su(4) are the matrices with entries

Ry Ryij _ Ryij _
=1, Y =1, mY =0,

Lijg _ plij _ Lij _
hi;7 = hy? =a, hy,? =0,

for k, 0 #£1i,7,
for k.0 #£ 1, 7,

respectively, for alll <i < j <mn.
Now, in order to remove the drift terfY in (I2), we
define, as usual, the time-dependent change of coordinates



X = ®(t,Y) = e Py, for all (t,Y) € R x M*. In these
coordinates,[{12) is describedlas

X = (Cpug + Cyuy + Cou)X, X(0)=1, (13)

where
0 0 0 e
0 0 -3 0
_ Dt Dt _
Ca = e Dye™ = 03 00 ’
—et 0 0
0 0 e ™ 0
_ 0 0 0 3
Cy=e DtDyeDt = et 0 0 o |’
0 -3 0 0
0 e 0 0
14t
_ —Dt Dt _ —€ 0 0 0
C,=c¢ D, e"t = 0 0 0 -3 |-
0 0 3 0

for all £ € R. We choose the real controls;, u,, u, as

Uz = (u1 + wg)e™ + (up — wug)e

uy = (uz 4 wug)e"™ + (ug — wug)e ™, (14)

u, = (us + 1ug)e™ + (us — 1g)e 4,

respectively, for allt € R, whereuy,...,ug € R are the

ui,...,u} are not known explicitly. Coron’s Return Method
only establishes their existence. Fortunately, for sy<tEa),
symbolic computation software packages have shown that if
we define them asj.(t) = Y_,7, akesin(27lt), for t € R,
1 <k <6, with ny > 1 and whereay, € R are randomly
chosen from the uniform distribution on the interyala, a
with “sufficiently large”a > 0, then it is “very likely” that
dim(spaq BJ(0),1 < k < 6,0 < j < 6}) = 15, that is, [(B)
holds (recall that dirtsu(4)) = 15). And, when [(8) is true,
it follows thatlim; .. [X (t) — X,.(¢)], whereX, = X! X ..
We remark that since}. is an odd periodic function with
period T = 1, the solutionX}: R — SU(n) in Definition[1
is also periodic with period” = 1. Note thata and ng
determine the “excitation level” af:. For f; = 1, computer
simulations have suggested thataandn; get larger, the
faster the convergence of the tracking erfor X, to zero
(assuming that diispar{ B} (0)}) = 15, of course).

The obtained simulation results are now presented for

fr = 1, a = ny = 5 and ay, having as values the
corresponding entries of the matrik = (ax,) below
—2.00 —1.39 4.66 4.31 1.80
—-0.31 —1.54 0.92 —-3.20 —-2.18
s —4.69 -0.31 1.75 3.94 -—-1.11
—2.79 0.77 4.09 2.34 3.46
2.19 0.60 —0.27 043 -3.75
—0.18 —4.44 —-1.38 —4.58 2.59

new controls. By applying the rotating wave approximation

(RWA) (see e.g. [9], [4], [5]) to systerh (1L3)=(14), which eon

With these choices, we have indeed verified that

sists in considering only the terms that are time-independedim(spar{ B (0)}) = 15. Figure 1 exhibits ihe convergence
and in disregarding all the oscillating ones, we obtain thef X — X.|| to zero (Euclidean norm on/®). We see that

following time-independent driftless system

X = (wiHE Ao HY +us H +ug Hi+us HE +ug HY, ) X,
(15)
with initial condition X (0) = I. It is straightforward to ver-
ify that Lie({HZ, H],, HE, Hl,, HE HL}) = su(4), i.e.
the system is controllable on $4). Hence, Coron’s Return

the norm of the tracking error is non-increasing. In Figure 2
the controlsuy, uo (top) and the “feedbacks’;, vo (bottom)
on the time interval[0,10] are shown. Notice that) is
relatively small in comparison with the contral,, for

k = 1,2. Therefore, the contral, is relatively close tou

as defined above, fok = 1,2. In order not to overwhelm
the presentation, we have chosen not to exhiRitv, for

Method implies that the system is regular (see Remark 2) < . < 6. They have, however, a similar behavior and a

and therefore Theorefd 2 can be applied. We chdbdse 1
and as goal state the C—NOT (Controlled-Not) gate

100 0
010 0
Xo=| 10 0 0 _1 |€SU@:
001 0

which is one of the universal gates and has great importans [
in quantum information theory [7], [5]. It is easy to see from™= °¥

the proof of Theoreni]1 thaff = {—4,0,4} with § = 0.
SinceV (X ) =2 > 0, Theoren{R implies that the smooth
open-loop controls (t) = u}(t) — fEV(XT(t)He X, () =
up(t) —vx(t), fort € Ry, 1 < k < 6, obtained by numerical
integration, assure thaitm; . [X (t) — X, (¢)] = 0, for any
“feedback gains”f? > 0. Here,u} = u} with T = 1,
and H, = HE, H, = HI,, Hy = HE, H, = Hl,,
Hs; = HE, H¢ = H{,. However, the periodic functions

1In quantum mechanics, this description is usually callalitteraction
picture or interaction representation.

similar order of magnitude as fdr=1, 2.
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Fig. 1. Convergence of the norm of the tracking error to zero.

IV. CONCLUDING REMARKS

In the solution here presented for the periodic motion
planning problem, the only needed assumption is that system



Lemma 2: Consider thatiV € Q(W,), j € N and let
1 < k < m. Assume thatflim; .. W,(t) = 0 and that
limy oo V(W (t) X[ (£)BL(t)Xo) = 0, where By, is as in
@). Then,V(W X B (0)X) = 0.

Proof: Let W € Q(W,). By definition, there exists

a real sequenc€t,,} such thatlim,, . t, = oo and
lim, 0o Wy(tm) = W. Now, for eachm € N, there
exists¢,, € Z such thats,, = t,, — ¢,,7 € [0,T), where
T > 0 is the period ofX, and of B] (see Remark]1).
Since [0,T] is compact, there exists a subsequefieg, }
in which lim; oo s, = 6 € [0,7]. Let {t,,,} be the
corresponding subsequence {f,}. Define the sequences
{t;,,} and {s;, } asty = t,, —0 ands;, = s, — 0,
respectively. We have thalfim; .. Wq(t) = 0 as well
as limy_.o. VW, () X[ (t)B}.(t)X~) = 0 (assumptions).
Therefore, by definition}im; . s;,. = 0, and Lemmdl
(@) is regular, which requires that the periodic functiafs ~9'V€S thatlim; . Wq(t7,,) = limi—oo Wo(tm, —6) = W.
satisfying [B) are explicitly known. Nevertheless, thislwi Hence, the continuity and periodicity ok, and of Bj
hardly be the case in general. For this reason, currentlgrundMPly  that Tim; ..o V(W (5, )X (), ) By (8, ) Xx) =
investigation is the explicit determination of, in @) in a  limi—o V(W(t5, ) X (s}, ) Bl (s5,,) Xoo) =

Fig. 2. Controlsui, uz and “feedbacks™:,v2 on the interval[0, 10].

manner that Theorefd 1 still holds under assumptions oth&(W X1 B (0)X..) = 0. |
than the regularity of syster](1). Theorem. 3:Consider the subseE = {W € SU(n) :
VWX B/(0)Xs) = 0, for all j € N,;1 < k < m},
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Mazyar Mirrahimi for valuable discussions and suggestions  Proof: Due to Propositiohl1, it suffices to prove that the
non-empty limit sef2(1,) of the solutioni¥/, is contained in
APPENDIX the setE. We remark that sinc®: M™ — R is a continuous
In order to prove Theorefl 1, we need first a few interlinear function, there exists > 0 such thafV(X)| < ¢/ X]||.
mediate definitions and results. For simplicity, we considefor all X € M™. Furthermore, it follows from[{2)[{8)H(9),
throughout this section that = (to, W;,) € R x SU(n) is Remark[l and the compactness of (8Ythat each of the
fixed and thati?,: R — SU(n) denotes the solution of the mappingsX,., X, W,, B}, X,, X, W,, B] is bounded,
auxiliar system[(8)+£(9) with initial conditiofi/, (to) = W,,. foreveryj e N, 1<k <m. .
Definition 2: [11] A point W € M™ is called alimit Consider the functions: R — R, b): R x M" — R,
point of W, if there exists a real sequenge,,} such that ﬁi: R — R defined respectively as
limy, 00 tr, = 00 @ndlimy, oo Wy(tm) = W. The set of

all limit points of W, is called thelimit set of W, and is O‘j(t) = V(W (t)), - forallt € R, .

denoted bW(Wq) bk.(tv W) : V(WX’I‘ (t)Bk (t)XOO)v (ta W) ERXM )
Remark 3:Since SUn) is a compact subset dif™, itis  Sx(t) = by, (t, We(1), for all t € R,

clear thatQ(W,) is a non-empty subset of $k). for j € N, 1 < k < m. We will prove by induction that

Proposition 1: [11] lim_.o d(Wy(t), Q(Wy)) = 0. . _ ) ; _
The next2 lemmas are essential in the proof of the Jlm Gi(t) = lim V(W,(6)X](t) B (t)Xo) =0,  (16)

important convergence result of Theoréi 3 given belowy, . I
which was inspired in the periodic version of LaSaIIe’\;¥Or j €N, 1<k < m. From [B){9) and the definition of

0 y — m 210 2
invariance principle presented in [11] and in tek-condition by, we have th,StV(@ .I?JV) - z%k:l Fibr(t, W).OZ 0 and
stabilization method of [6]. Vit W) =2 fibe(t Wbyt W), whereb (¢ W) =

Lemma 1l:Let W: R — M™ be a continuously differen- VIWXI() 0=y o0 (5 W) H B (D) Xoo) + by (8, W) and

tiable mapping such thdtm, .., W (t) = 0. Suppose that Jscl_""{/fw I ntc_)n-zfero,t_for(t,W) < IR;jxthj\i:.
{t,} is a real sequence such that,, ... t,, — oo and inceV is a non-negative function, we conclude s

ity W(tm) = W. Then, for every € R, we have that a non-decreasing fl{nct|0n bounde_d from al_)ov_e _suchdhat
Tt oo W (tm + €) = W. is bqunded. Her?cehmH00 a(t) exists and is finite. Th|§

Proof: Lete > 0 and m € N. We have that :ﬁle:ulgn a'°”9 \tmth_Bart:f\Iatgb(lJ_etmmn/wat(szee_e.% [11_?]]) give
W (b +€) = W (1) = [ W (£)dt. Thus, the inequality " 1mfﬁgz)a( ) - Zk?}({ff 'Ef)fx* (qt()go ) e

o d t—o00 = t—o00 r o) = Uy

Wt + €) = W(ta)ll < lel supieqs,, 1, WO holds. "2t F 20 < o from which (8)-(9) inﬁply that
The assumptions then imply thiin,,, oo W (¢, +¢€) = W. - .
For e < 0, we can proceed in an analogous manner. | thl?o We(t) =0. a7



Now, consider the induction hypothesis which implies thatG is finite. It is clear that the function
) , ) , n: Z — R defined asn(¢) = cos((2¢ — no2)m/(n — 2ns)),

}EEO Bi(t) = tlggo V(W ()X (1) B (H)X) =0,  (18) for all ¢ € Z, has peric()d)|n - 2n(2(| > 0. 'I')hu/sf the val)lies
assumed by; must be finite in number.

Now, the convergence result will be shown. Recall that,
for all X € SU(n), we have that-n < V(X) < n and that
V(X)=nifand only if X = I. Let § = max(G \ {n}).
SinceG is finite, we have that

for somej € N and all1 < k < m. We have that
bL(LW) = VIVXI() S, 26 W) HeBY () Xoo) +
b7, W), forall 1 <k < m, (t,W) € R x M". Straight-
forward computations show that; is bounded because
Br(t) = by (t,W,(t)), for all 1 < k < m, t € R. Hence,
(18) and Barbalat's Lemma imply thaim; .. BTN (t) = <z<n=z=n, forallzed. (19)
lim; oo V(W () X[ (1) B () Xoo) = 0, for 1 <k <m. ¢ h Since SUn) | ¢ and
We have thus proved thdt (|16) is true. At this moment, iwpﬁf e_) ?%Vi(sw é(gnt;u%uslni?iollgxi I,; ;ﬁ(;EpUaEZ) 6}2
is simple to prove thaf2(1W,) C E. Indeed, assume that uﬁiforml ; _— I
— . y continuous. Define the function: R — R by
We Q(_Wq)TC ?U(”)' Then, {I6),[I") .and Lemnia 2 imply a(t) = V(W,(t)), for t € R. Recall that, by construction,
thatV(WXOOBk(O)XOO) =0, foreachj e N, 1 <k < Tn. we have thatV(t, W) = 221:1 ax(t, W)2 > 0, for all
] . B - (t,W) € R x M™. Note thata; and V are smooth, for

LemrEa B.Eog%slder ;he subsel” = {W he hSU(n)i. eachl < k& < m. SinceV is a non-negative function,
V(V[Q N in:lo()‘i)’ior S(imi/\i < (CTShUC thag As| _d we conclude thaty is a smooth non-decreasing function.
LILiziAi = 1L,3() = - = 3(A)}. Then I € F an Therefore,V (W, (t)) > V(W) > 4, for all t > ty. The

limy o0 d(Wq(t), ) =0 . , uniform continuity ofVV|SU(n) then implies that there exists
Proof: According to Theoreni]3, it suffices to showu ~ 0 such that

the inclusionE C F. Let W € E C SU(n). It is a
well-known result in linear algebra that’ € SU(n) can || X-W,(t)|| <p=V(X) >4, fort>ty, X € SU(n)

be decomposed a8’ = Mdiag( A1, ..., \,)MT, where M (20)
is unitary, Ay,..., A\, € C, |X\j| = 1 and [, \; = 1. (indeed, choose = V(W;,) — ¢ > 0). The convergence
Thus, V(W) = 37 R(\;) and V(WXI Bj(0)X,) = result of LemmdB means that

V(diagA1, - -, An)(XooM)TBL(0)(XoM)) = 0, for each
1 < k < m, j € N. Since X,cM is unitary, it
is clear thatN: su(n) — su(n) defined by N(Y) = Lete > 0 and definee = min(e, p). Thus,
XooM)'Y (X M), for everyY € su(n), is a linear surjec- — _

t(ive isor)noréhism. Now, by assumpti(on, systémh (1) is regular "t = T Jo(t) € F's.tfla(t) - Wo ()| <€ < p,

and [3) is satisfied. Henc&[(diag(\1,...,A\n)X) =0, for  for someT € R. DefineT = max(T,t,) and lett > T.
every X € su(n), and thusV(diag(A, ..., A,)D¢) =0, for  Sincea(t) € F c SU(n) and V(F) c G, 20) gives that
eachl < ¢ < n, whereD; = diagz, —,0,...,0), D2 = § < V(a(t)) € G. However,§ < V(a(t)) < n. Therefore,
diag(0,2, —¢,0,...,0),...,Dp—1 = diag0,...,2,—) and from (I9), we obtain thal/(«(t)) = n, which implies that
D,, = diag(+,0,...,0,—) are the canonical diagonal matri- a(t) = I. We have thus shown théitn, .., W, (t) =I1. =
ces ofsu(n). From the diagonal structure @14, ..., D,,, we

Ve>03T e RVt >T Ja(t) € F st |la(t) — W, (t)] < e

conclude thaf\;, ..., \,, must satisfy3(\;) = - - - = I(\,). REFERENCES
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of values. If we show that; can only assume a finite number

of values, we will have shown that the same holdsifar G,
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